
INTERFACE SCIENCE

Grain growth in porous two-dimensional nanocrystalline
materials

Leonid Klinger Æ Eugen Rabkin Æ Lasar S. Shvindlerman Æ
Günter Gottstein

Received: 12 February 2008 / Accepted: 25 April 2008 / Published online: 24 May 2008

� Springer Science+Business Media, LLC 2008

Abstract Grain growth in two-dimensional polycrystals

with mobile pores at the grain boundary triple junctions is

considered. The kinetics of grain and pore growth are deter-

mined under the assumption that pore sintering and pore

mobility are controlled by grain boundary and surface diffu-

sion, respectively. It is shown that a polycrystal can achieve

full density in the course of grain growth only when the initial

pore size is below a certain critical value which depends on

kinetic parameters, interfacial energies, and initial grain size.

Larger pores grow without limits with the growing grains, and

the corresponding grain growth exponent depends on kinetic

parameters and lies between 2 and 4. It is shown that for a

polycrystal with subcritical pores the average grain size

increases linearly with time during the initial stages of

growth, in agreement with recent experimental data on grain

growth in thin Cu films and in bulk nanocrystalline Fe.

Introduction

Many unusual properties of nanocrystalline inorganic

materials are determined by the fact that a significant por-

tion of all atoms in these materials are located within the

grain boundaries (GBs) where atomic coordination and

bonding are different from those in the crystalline bulk [1].

However, keeping the grain size in such materials in the

nanometric range is difficult because of the high driving

force for grain growth which scales inversely with the grain

size. The majority of manufacturing methods of nanocrys-

talline materials results in some residual porosity localized

mainly at the triple and quadruple junctions of the GBs. For

example, the maximal density achieved in nanocrystalline

Pd obtained by inert gas condensation was about 98.5% of

bulk density [1]. Moreover, some porosity at the triple and

quadruple junctions can form even in initially pore-free

nanocrystals at the beginning of grain growth, since the

excess volume of some receding GBs cannot be fully

absorbed by their neighbors [2–4]. It is clear that grain

growth in such materials is strongly affected by residual

porosity and should be treated analogously to the combined

densification/grain growth during the late stages of sintering

[5–6]. However, the applicability of the models developed

in previous studies [5–6] to the grain growth in nanocryst-

aline materials with residual porosity is questionable. For

example, Brook has suggested that at the late stages of

sintering grain growth is much faster than the corresponding

densification rate and, therefore, the latter can be disre-

garded. Assuming that the pores control the GB mobility

and that grain growth causes the pores to coalesce he arrived

at the following growth law:

R
4 � R

4

0 ¼ Kt ð1Þ

where R
4
; t; and K are the average grain radius, annealing

time, and the temperature-dependent kinetic constant,

respectively. The temporal separation of grain growth and

densification may make sense for conventional polycrystals

with a grain size in the micrometer range, since different

kinetic constants determine the pores mobility and their

shrinking rate (surface and GB diffusivity, respectively).
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However, in nanocrystalline materials where pores are

separated at very short distances comparable with the grain

size the characteristic diffusion distances are also short, and

the rate of densification may become comparable with the

rate of grain growth. Indeed, the driving force for GB

diffusion flux responsible for the shrinkage of the pores

scales with cs/rR, where cs, r and R are the surface energy,

pore radius, and grain radius, respectively. Therefore, the

rate of densification continuously increases with decreasing

grain and pore size, which should be taken into account in

the analysis of grain growth in nanocrystalline materials.

Yan, Cannon, and Chowdhry analyzed the grain growth

that occurs simultaneously with densification assuming that

the former is controlled either by GB mobility or by the

mobility of the pores dragged by GBs [6]. It is known that

mobile pores or particles merely renormalize the GB

mobility leaving the basic kinetic law and topology of grain

growth unchanged, provided their number per unit area of

the GBs remains constant during grain growth [7]. However,

different kinetic growth laws are expected for a polycrystal

in which mobile pores are located in the triple and quadruple

junctions, making the grain growth problem equivalent to

the one of grain growth in a polycrystal with finite mobility

of triple and quadruple junctions [8, 9]. For example, in a

polycrystal with triple junctions of low mobility a linear

growth law should be observed, and the Von Neumann–

Mullins relationship governing the topology of the poly-

crystalline microstructure also changes [8]. It is clear that in

nanocrystals with very small and highly mobile pores loca-

ted at the GB junctions the drag force due to the pores is

comparable with the intrinsic GB self-drag, which is defined

as the ratio of migration rate and mobility of a pore-free GB

[10]. Therefore, in nanocrystals the problem of grain growth,

pore coarsening and densification should be treated in a self-

consistent way, since it is not known a priory which of the

factors mentioned above is controlling the whole process. To

our knowledge, no such analysis has been performed so far.

In the present work we will analyze simultaneous grain

growth/densification in a two-dimensional polycrystal with

circular pores located at the triple junctions. Though the

analysis presented below is of generic nature and valid for

arbitrary initial pore and grain sizes, we will focus the sub-

sequent discussion on nanocrystalline materials exhibiting

particularly high rates of pore shrinkage.

The model

Two-dimensional grain growth with mobile pores

at triple junctions

We will assume that the pores in a two-dimensional

nanocrystalline material are located at all triple junctions

and are sufficiently mobile, so that no breakaway of

migrating GBs from the pores occurs during grain growth.

Let us consider a two-dimensional grain limited by n GBs

with identical energy and mobility (see Fig. 1). The normal

velocity of the curvature-driven motion of each GB, Vn,

can be described by the following equation [11]

Vn ¼ �Mcj ¼ �Mc
oh
ol
;

where M, c and j are the GB mobility, GB energy, and GB

curvature, respectively. h and l are the slope of the GB and

the line element of the GB arc, respectively. Thus, the total

area of the grain, S, changes with time according to

dS

dt
¼
I

Vndl ¼ �Mc 2p� nDh½ �; ð2Þ

where Dh is the angle between two neighboring GBs (see

Fig. 1). We will further assume that at all stages of grain

growth the pores are much smaller than the grains. In this

case, the migration of an individual pore is driven by the

imbalance of the surface tensions (we are assuming that all

GBs are isotropic, and we do not make a distinction

between the GB energy and GB stress or tension):

dL

dt
¼ mc 1� 2 sin

Dh
2

� �� �
; ð3Þ

where L is the distance from the center of the grain to the

pore located at the triple junction, and m is the mobility of

the pore. The migration of an equilibrium triple junction

pore (i.e., a pore with three dihedral angles, w, determined

by the condition of mechanical equilibrium at the triple line

where the GB and two free surfaces meet) controlled by

surface diffusion was considered by Spears and Evans [12]

and later by Riedel and Svoboda [13]. Numerical analysis

L

∆θ

θ

Fig. 1 Pores at triple junctions of a 5-sided grain of size L
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of the governing diffusion equations showed that the

migration rate depends on the angle w, and that at high

migration rates the pore mobility becomes velocity-

dependent [12]. For low pore migration rates Riedel and

Svoboda derived the following velocity-independent

expression for the pore mobility [13]:

m ¼ XDsd
pkTr3

pðwÞ; ð4Þ

where X, Ds, and d are the atomic volume, surface diffu-

sion coefficient, and the effective width of the surface layer

in which diffusion occurs, respectively; k is the Boltzmann

constant, and T is the absolute temperature. For non-cir-

cular pores r is understood as ‘‘effective radius’’, i.e., the

radius of a circular pore of the same area as a non-circular

one. The dimensionless factor p(w) is given in Eq. 12 of the

work of Riedel and Svoboda [13]. The angle w depends on

the ratio of GB and surface energies according to

cosw = c/2cs. The calculations show that for c/cs varying

from 0 to 1 the corresponding p values change in the

narrow range from 1 to 0.92. Therefore, the introduction of

factor p is not warranted in view of the number of sim-

plifying assumptions made in this work, and in what

follows it will be neglected.

For pores of infinite mobility the surface tension should

be balanced at the triple junction, which corresponds to

Dh = p/3. In this case Eq. 2 reduces to the classical von

Neumann–Mullins equation [11]. Let us now assume that

for pores with finite mobility Dh = p/3 - u, where

u � p/3. Substituting this expression in Eqs. 2 and 3 yields

dS

dt
¼ Mcp

3
ðn� 6Þ �Mcnu ð5Þ

and

dL

dt
¼ mcu

ffiffiffi
3
p

2
: ð6Þ

We will further assume that the shape of the grains is

self-similar, i.e., S = aL2 for all grains in the polycrystal,

where a is a shape coefficient (a & p). In this case

dS

dt
¼ 2aL

dL

dt
: ð7Þ

Substituting Eqs. 4, 6, and 7 in Eq. 5 we get

dL

dt
¼ ðn� 6ÞMcp=6a

LþMn=ma
ffiffiffi
3
p ¼ Mcðn� 6Þp=6a

Lþ r3pkTMn=XDsda
ffiffiffi
3
p ;

or, assuming for the sake of simplicity a = p,

dL

dt
¼ Mcðn� 6Þ=6

Lþ r3kTM=XDsdn
ffiffiffi
3
p ð8Þ

Eq. 8 shows that, similarly to the case of an ideal two-

dimensional polycrystal, grains with n [ 6 will grow and

those with n \ 6 will disappear in the course of grain

growth. However, contrary to the classical Von Neumann–

Mullins equation, the rate of grain growth/shrinkage is now

dependent on the parameters of the pores (the second term

in the denominator of Eq. 8). It should be noted that our

Eq. 8 is similar to the Eq. 23 of the work of Riedel and

Svoboda obtained using energy dissipation arguments [13].

Though Eq. 8 was derived for an individual grain with n

sides, in what follows we will understand this equation in

terms of the average grain size in a polycrystal and the

average number of grain sides for all grains in a poly-

crystal, n: This interpretation of Eq. 8 is similar in its spirit

to the Burke–Turnbull model of normal grain growth

(mean field approximation) [14].

Kinetics of grain growth with growing/shrinking pores

Following the approach of Yan, Cannon, and Chowdhry [6]

we will represent the instantaneous rate of change of the

pore radius as a sum of two contributions:

dr3

dt
¼ dr3

dt

� �
P

þ dr3

dt

� �
G

ð9Þ

where the first term on the right-hand side (RHS) describes

the increase of pore size due to the decrease of the number

of triple junctions in the course of grain growth, and the

second term gives the rate of shrinkage at constant grain

size due to GB diffusion (see Fig. 2). The first term on the

RHS of Eq. 9 can be found from the condition of a constant

total pore area per unit area of the sample. Taking into

consideration that there are n/3 pores per grain with n sides,

n

3

pr2

aL2
¼ const; and thus

dr3

dt

� �
P

¼ 3
r3

L

dL

dt
: ð10Þ

Substituting Eqs. 8, 10, and the expression for the rate of

pore shrinkage due to GB diffusion (see Appendix) in

Eq. 9 we obtain

Coarsening

Densification

Fig. 2 Sketches of pore coarsening due to grain growth and densi-

fication due to grain boundary diffusion. The arrows in the sketch at

the lower left-hand side denote the directions of vacancy flux
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dr3

dt
¼ � 27nDGBdcsX

4p2kT

1

L
þ Mcðn� 6Þ=6

Lþ r3kTM=XDsdn
ffiffiffi
3
p 3r3

L
:

ð11Þ

Introducing dimensionless variables for the relative grain

and pore size, and time

X ¼ L=L0; Y ¼ ðr=r0Þ3; s ¼ tMcðn� 6Þ=6L2
0;

where L0 and r0 are initial grain and pore size, respectively,

transforms Eqs. 8 and 11 to

dX

ds
¼ 1

X þ aY
ð12Þ

dY

ds
¼ � b

aX
þ 3Y

XðX þ aYÞ ; ð13Þ

where

a ¼ r3
0kTM

L0XDsd
1ffiffiffi
3
p

n
ð14Þ

b ¼ DGBcs

Dsc
81

2
ffiffiffi
3
p

p2ðn� 6Þ
: ð15Þ

Dividing both sides of Eq. 13 by the respective sides of

Eq. 12 leads to the following equation:

dY

dX
¼ � b

a
þ ð3� bÞ Y

X
ð16Þ

which, taking into account the initial condition Y(1) = 1,

can be easily solved:

Y ¼ b
að2� bÞX þ

2a� bð1þ aÞ
að2� bÞ � Xð3�bÞ: ð17Þ

The analysis of Eq. 17 shows that for b\ bc, where

bc ¼
2a

1þ a
ð18Þ

the relative pore size Y grows without limits with increasing X

(and, hence, with increasing time). This means that in this case

the grain growth prevents full densification of the nano-

crystalline material which retains some porosity in spite of

the fact that the pores reside at the triple junctions of the GBs.

For b[bc, Y drops to zero with increasing X, either monot-

onously or after achieving a maximum. The pores vanish at

XY!0 � X0 ¼
b

bð1þ aÞ � 2a

� �1=ð2�bÞ
: ð19Þ

Substituting Eq. 17 in Eq. 12 yields a time dependence of

X for Y [ 0:

s¼
ZX

1

dx xþaYðxÞð Þ

¼�2þa
4�b

þ 1

2�b
X2þ 2a�bð1þaÞ

ð4�bÞð2�bÞX
ð4�bÞ ð20Þ

and

sY!0 ¼
1

4� b
2

b
bð1þ aÞ � 2a

� �2=ð2�bÞ
�2� a

" #
: ð21Þ

It follows from Eq. 12 that for b[bc the grain growth

becomes parabolic for s [ sY!0; i.e., after full

densification is achieved. The unified X(s) dependence

for all s can be obtained in this case by combining Eq. 12

with Eqs. 19 and 20:

sðXÞ ¼
� 2þa

4�bþ X2

2�b�
bX2

ð2�bÞð4�bÞ
X
X0

� �2�b
X\X0

� 2þa
4�bþ

bX2
0

2ð4�bÞ þ X2

2
X [ X0

8<
:

ð22Þ

Eqs. 19–22 represent the main result of this work.

Discussion

The temporal behavior of a polycrystal with pores is

determined by the dimensionless parameters a and b given

by Eqs. 14 and 15. However, trying to estimate these

parameters for any specific material is difficult, if not

impossible, since the kinetic coefficients DGB, Ds and M in

these equations depend sensitively on the impurity content

of the material, annealing conditions, and many other

factors that may change them by orders of magnitude. To

the best of our knowledge, no self-consistent set of GB

diffusivities, GB mobilities, and surface diffusivities in a

material of well-defined chemical composition under well-

defined annealing conditions is available in the literature.

We will follow the approach of Mishin, Kaur, and Gust and

instead of making estimates for a specific material consider

a ‘‘typical’’ face centered cubic (fcc) metal [15]. According

to a compilation of Ref. [15],

dDGB ¼ 9:7� 10�15exp �9:07
Tm

T

� �
m3=s ð23aÞ

and

dDs ¼ 7:8� 10�16exp �6:55
Tm

T

� �
m3=s; ð23bÞ

where we assumed for simplicity that the thickness of

diffusion layers is the same for GBs and surfaces. Though

it is known that different atomic jumps are responsible for

GB migration and GB diffusion [16], we will use a rough

estimate suggested by Sinclair, Hutchinson and Brechet for

the GB mobility in pure material [17]:

M ¼ B
dDGBX
b2kT

ð24Þ

where B is a numerical coefficient close to one and b is the

magnitude of the Burgers vector. In Ref. [17] it was found

that B & 0.7 for pure iron. For estimating the average
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number of grain sides, n; we note that computer

simulations of two-dimensional grain growth yielded

dS=dt � 1:8Mc for the growth rate of the average grain

area, S [18]. Comparing this result with the von Neumann–

Mullins relationship in which the area and the number of

sides of the individual grains are replaced by respective

average values for a polycrystal gives n � 7:7: We will

further assume that cs/c & 3, which is a typical ratio of

surface and GB energies in pure metals [14]. Assigning

L0 = 20 nm and r0 = 2 nm as characteristic values for the

initial grain and pore sizes in a nanocrystalline material

yields the following expressions for the temperature-

dependent parameters a and b:

a � 4:2� exp �2:52
Tm

T

� �
and

b � 52:0� exp �2:52
Tm

T

� �
ð25Þ

The values of a and b for several homologous

temperatures relevant for grain growth in nanocrystalline

materials are presented in Table 1. It can be seen from this

table that a � 1 for low temperatures and, hence, the

condition (18) can be re-written in the form bc = 2a.

Following the analysis of the previous Section, and using

the definitions of the parameters a and b in Eqs. 14 and 15

we arrive at the conclusion that a nanocrystalline material

with initial pore size larger than r�0 ; where

r�0
� 	3� 81csnb2

4p2Bcðn� 6Þ L0; ð26Þ

cannot achieve full density during grain growth, i.e., the

pores will grow without limits with increasing grain size. In

this case, and for long annealing times, the last term on the

RHS of Eq. 20 will dominate, and the grain growth law can

be written in the following form:

L

L0

� �4�b

� ð4� bÞð2� bÞ
2a� bð1þ aÞ

Mcðn� 6Þ
6L2

0

t ð27Þ

For b � 1, Eq. 27 can be reduced to the result of Brook

[Eq. 1] that disregards sintering during grain growth. In the

general case in which sintering cannot be disregarded the

grain growth exponent can vary continuously from 2 to 4,

depending on the relation among the various kinetic

parameters of the system (it should be noted that according

to Eq. 18 0 \ bc \ 2). To our knowledge, this is the first

analytical model of grain growth that predicts a continuous

spectrum of the growth exponent from 2 to 4. It should be

noted that grain growth exponents higher than two are

often observed in experiments [14].

Using Eq. 26 and assuming b = 0.25 nm, L0 = 50 nm

we arrive at a critical pore size of r�0 � 5 nm: Polycrystals

with pores of larger initial dimensions will exhibit grain

growth behavior very different from their counterparts with

smaller pores: while in the former the pores will grow

without limits with increasing grain size, in the latter the

pores will eventually disappear and the nanocrystalline

material will attain full density.

Figure 3 is an example of the grain and pore growth

kinetics in a system with subcritical initial pore size

ðr0\r�0Þ: The initial part of the X(s) dependence can be

fairly well approximated by a linear function. This type of

linear growth law followed by a parabolic one was

observed by Cao and Zhang during grain growth in thin

nanocrystalline Cu films (see Fig. 3 in Ref. [19]), and by

Krill and co-workers during grain growth in bulk nano-

crystalline iron (see Fig. 1 in Ref. [20]). Since such linear

growth law is often considered as a typical feature of the

initial stages of grain growth in nanocrystalline materials

[8, 9, 20], we analyzed where in the parametric (a,b) plane

one has to expect a linear growth law in the framework of

our model. Let us consider a linear approximation of

Eq. 22:

~sðXÞ ¼ g � ðX � 1Þ; for 1\X\Xm; where

Xm ¼
X0 X0 [ 2

2 X0\2



ð28Þ

Obviously, the linear growth law is associated with the

effect of triple junction pores on grain growth and,

Table 1 Parameters a and b (see Eqs. 14, 15) for a typical fcc metal

(according to correlations of Mishin et al. [15]) at different homolo-

gous temperatures

T/Tm 0.2 0.3 0.4 0.5

a 1.4 9 10-5 9.4 9 10-4 7.8 9 10-3 0.028

b 1.8 9 10-4 1.2 9 10-2 9.6 9 10-2 0.34

0

0 2 4 6 8 10

1

2

3

4

R
el

at
iv

e 
gr

ai
n/

po
re

 s
iz

e

τ, dimensionless time 

Grains

Pores

Fig. 3 Kinetics of grain growth and pore shrinkage for a = 1 and

b = 1.5 (see Eqs. 14, 15 for definitions). Pore-controlled linear

growth is followed by parabolic growth after the pores disappear

5072 J Mater Sci (2008) 43:5068–5075

123



therefore, a linear interpolation of the X(s) dependence

makes sense for X \ X0. However, for X0 which is too

close to 1 the linear interpolation will always work just

because of X - 1 being small in the interval 1 \ X \ X0.

To exclude this ‘‘artificial’’ linearization from our analysis

we selected (somewhat arbitrarily) X = 2 as a lower limit

for the range of grain sizes to be linearized.

The least square analysis of the linear interpolation (28)

of Eq. 22 yields:

g ¼ 3

ðXm � 1Þ3
ZXm

1

ðX � 1ÞsðXÞdX ð29Þ

and

q2 � 1

Xm � 1

ZXm

1

sðXÞ � ~sðXÞ½ �2dX

¼ 1

Xm � 1

ZXm

1

s2ðXÞdX � g2

3
ðXm � 1Þ2; ð30Þ

where q is an average error associated with the linear

interpolation. For the linear approximation to be of a high

accuracy, the inequality q� sY!0 has to be fulfilled.

Figure 4 shows the borders of the two regions in the

parametric (a, b) plane which are defined by the inequal-

ities q\0:01sY!0 and q\0:02sY!0: Both regions are

located above the dashed line defined by Eq. 18: this line

separates the region in which pores at triple junctions grow

without limits with increasing time (below the line) from

the region in which pores vanish with time (above the line).

The set of parameters employed in calculating the X(s) and

Y(s) dependencies shown in Fig. 3 (a = 1, b = 1.5) is

within the region defined by the stricter of the two

inequalities. The good quality of a linear fit for X(s) is

clearly visible in this figure.

An example of the time dependence of the grain and pore

size for parameters a and b which are outside the lineari-

zation regions defined in Fig. 4 is shown in Fig. 5. A

sigmoidal shape of the X(s) curve with an ‘‘incubation

time’’ during which grain growth is particularly slow is

clearly discernible in this figure. A similar phenomenon of

stabilization of the nanocrystalline microstructure was

predicted in the model in which migrating GBs eject their

free volume into the bulk in the course of grain growth [21].

We expect that, qualitatively, the kinetic behavior of

three-dimensional polycrystals with cylindrical pores at the

GB triple junctions will be similar to the behavior of the 2D

polycrystal considered in the present work. This follows

from the similarity of our Eq. 8 and kinetic equation of

Riedel and Svoboda describing the grain growth in the

three-dimensional case [13]. Moreover, there is a topo-

logical similarity of the problem of circular pore

dissolution in the 2D case and a corresponding three-

dimensional problem of the dissolution of a cylindrical

pore located at the triple line (see Appendix). However, the

kinetics of shrinkage of the isolated pores at the grain

corners of a three-dimensional polycrystal may be very

different from the one considered in the present work.

Indeed, our preliminary calculations show that for isolated

pores located at the grain corners the dependence of the

shrinkage rate on grain size is much weaker (logarithmic)

than for cylindrical pores at the triple lines. This may

enable full densification for all initial conditions. A

detailed analysis of the three-dimensional problem will be

given elsewhere [22].

0.0
0 1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

Y>0

ρ< 0.02τ
Y=0

β

α

ρ< 0.01τ
Y=0

Fig. 4 Regions of good linerarization of the X(s) dependence at the

initial stages of grain growth. Smaller region (bounded by a green line

in the on-line version of this paper) corresponds to a stricter

linearization criterion

0 5 10 15 20
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1
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3

4

5

6

Pores

R
el

at
iv

e 
gr

ai
n/

po
re

 s
iz

e

τ, dimensionless time 

Grains

Fig. 5 Kinetics of grain growth and pore shrinkage for a = 10 and

b = 5. Pores slow down the grain growth at the initial stages of the

process
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Conclusions

We considered grain growth in a two-dimensional nano-

scale polycrystal with small mobile pores located at the GB

triple junctions. A model describing grain growth in such

porous nanocrystalline material that proceeds simulta-

neously with densification controlled by GB diffusion was

developed. The following conclusions can be drawn from

the present study:

1. The grain growth behavior crucially depends on the

initial pore size. A unique critical value of the initial

pore size can be calculated for each combination of

GB and surface diffusivities and energies, GB mobility

and initial grain size. The subcritical pores disappear

from the system in the course of grain growth, whereas

the supercritical pores grow without limits with the

growing grains, so that densification cannot be

completed.

2. For a supercritical initial pore size grain growth at long

annealing times follows a power law, with a growth

exponent anywhere between 2 and 4 depending on the

relevant kinetic parameters.

3. For a subcritical initial pore size a linear growth law

can be observed at the initial stages of grain growth.

After the pores disappear the grain growth becomes

parabolic. Such linear grain growth followed by a

parabolic one was recently observed in thin Cu films

[19] and bulk nanocrystalline Fe [20].
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Appendix

Dissolution of a circular pore at a triple junction

Let us consider a cylindrical pore of radius r located at a

GB triple junction in a two-dimensional polycrystal. We

will assume that pore dissolution is controlled by GB dif-

fusion alone. The diffusion flux, j, along the GB (per unit

length of the pore) is

j ¼ �DGBd
kT

ornn

ox
; ðA1Þ

where rnn is the normal stress at the GB, and x is the

coordinate along the GB. DGB is the GB-self diffusion

coefficient and we assume for simplicity that the diffusional

width of the GB is equal to that of the surface. In the middle

between two identical pores (x = 0) this flux should vanish

because of symmetry reasons. In the steady state sintering

regime the drift velocities of two grains normal to the GB

should be constant, which means that the divergence of the

flux j given by Eq. A1 is also constant. In this case

rnnðxÞ ¼ ax2 þ b; ðA2Þ

where a and b are constants. The distance between

neighboring pores is 2l & 2pL/n - 2r (see Fig. 1). The

chemical potential of the atoms on the pore surface and at

the triple junction between the pore surface and a GB

are l0 - csX/r and l0 + rnnX, respectively (here, cs is the

surface energy and l0 is the chemical potential of atoms in

the crystal bulk). From the balance of these chemical

potentials we get

rnnjx¼l¼ �cs=r: ðA3Þ

To find the unknown constants a and b we use the

boundary condition A3 and the total force balance at the GB:

�cs þ
Z l

0

rnnðxÞdx ¼ 0; ðA4Þ

which yields a ¼ � 3csðlþrÞ
2rl3

: For the atomic flux to the pore

we obtain from Eqs. A1 and A2

jx¼l ¼
3csDGBd

2kT

lþ r

rl2
: ðA5Þ

The rate of pore dissolution can be found from the

condition of mass balance:

2pr
dr

dt
¼ �3Xjjx¼l ðA6Þ

dr

dt
¼ � 9DGBdcsX

4pkT

lþ r

r2l2
: ðA7Þ

For l 	 r
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